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Abstract

This paper develops a sensitivity-based updating method to identify the damage in a tested reinforced concrete (RC)

frame modeled with a two-dimensional planar finite element (FE) by minimizing the discrepancies of modal frequencies

and mode shapes. In order to reduce the number of unknown variables, a bidimensional damage (element) function is

proposed, resulting in a considerable improvement of the optimization performance. For damage identification, a reference

FE model of the undamaged frame divided into a few damage functions is firstly obtained and then a rough identification

is carried out to detect possible damage locations, which are subsequently refined with new damage functions to accurately

identify the damage. From a design point of view, it would be useful to evaluate, in a simplified way, the remaining bending

stiffness of cracked beam sections or segments. Hence, an RC damage model based on a static mechanism is proposed to

estimate the remnant stiffness of a cracked RC beam segment. The damage model is based on the assumption that the

damage effect spreads over a region and the stiffness in the segment changes linearly. Furthermore, the stiffness reduction

evaluated using this damage model is compared with the FE updating result. It is shown that the proposed bidimensional

damage function is useful in producing a well-conditioned optimization problem and the aforementioned damage model

can be used for an approximate stiffness estimation of a cracked beam segment.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Damage assessment and condition evaluation of existing civil infrastructures are essential for decision
making in regular structural maintenance and disaster remediation. Considerable attention has been paid to
nondestructive damage identification and structural health monitoring [1] of civil engineering structures
during past decades. Damage produces stiffness reduction in damaged structures resulting in changes of
structural static and dynamic responses, which means damage can be identified through dynamic techniques,
as well as static ones. Various experimental approaches such as modal testing and controlled load–deflection
testing as well as indices resulting from both tests should be integrated for a reliable structural condition
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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assessment. This paper proposes and investigates dynamic and static approaches validated on an RC structure
tested under an alternating combination of static loading tests for damage producing and modal tests.

Owing to the limitation of visual or local experimental techniques [2], global damage identification methods
based on the vibration characteristics, which are usually represented as modal parameters, of the structures have
been widely investigated and successfully applied in many practical cases [3–7]. Recently, sensitivity-based FE
updating methods, which overcome the limitations of the direct methods [8–10], have been popularly used for
damage identification purposes. These methods aim to update the physical parameters of structures (Young’s
modulus, density, geometric dimensions, etc.), which generally present physically meaningful results [11]. And
the updating process can be achieved by iterative optimization algorithms [12] due to the nonlinear relation
between objective residuals and model properties. Friswell and Mottershead [13] elaborate on relevant FE model
updating techniques and a comprehensive review of sensitivity-based updating methods is given by Link [14].

In this study, a sensitivity-based FE updating method is developed to identify the damage of a laboratory-
scale reinforced concrete (RC) frame. The updating is implemented by the nonlinear least square (LS) method
improved by the trust region Newton algorithm. In order to reduce the number of updating parameters, a
bidimensional damage function method is proposed for structures modeled with bidimensional finite elements
(FEs), which simultaneously improves the iteration performance of the optimization process. Each damage
function represents one damage element consisting of some neighboring FEs. Furthermore, the damage
function can be simplified into a step alike damage function when necessary, which is applied in this RC frame
case. On damage identification of the RC frame, the initially developed FE model divided into several
substructures is firstly updated to the reference state using the measured modal frequencies and mode shapes
of the undamaged frame. Then a subsequent updating process is performed for a rough estimate of possible
damage locations using the modal data of the damaged frame. Finally, the possible damaged regions are
fractionized into new substructures (new damage functions) and the reference model is updated again to the
damage state. Thus, a more accurate identification of the damage is obtained by comparing the reference and
damage states. Then a damage identification process by dynamic means is achieved.

On the other hand, from a design point of view, it would be useful to evaluate, in a simplified way, the
remaining bending stiffness of cracked beam sections or segments for further condition assessment or remnant
life evaluation of RC structures. But in the existing European and American codes for the design of concrete
structures, there are no formulas to estimate the remnant bending stiffness of cracked beam sections or
segments. Hence, with an assumption of damage effect spreading over a region of structure, an RC damage
model is proposed to estimate the remnant stiffness and to give a general evaluation of the damage situation of a
cracked beam segment of the RC frame. An equivalent stiffness formula is deduced using the damage model.
Then the remnant stiffness of the cracked beam segment is obtained using a proposed formula based on the
damage model and verified against the FE updating results. The relative stiffness (Young’s modulus) reductions
are compared due to the fact that the proposed formula is suitable for a static mechanism, but the updating
results are related to a dynamic mechanism. It is shown that the remnant stiffness of the cracked beam segment
can be well estimated using the proposed damage model and this model is applicable to similar cases.

2. FE model updating method

In general, sensitivity-based FE model updating can be regarded as an optimization process aimed at
minimizing the discrepancies between the measured and analytical model properties. This section describes the
theory of the updating method used in this study.

2.1. Objective function

Two modal parameters, modal frequency and mode shape are adopted to construct the residual vectors of
the objective function, which is stated as a nonlinear LS problem:

f ðuÞ ¼
1

2
rðuÞ
�� ��2 ¼ 1

2

rf ðuÞ

rmðuÞ

�����
�����
2

r : Rn ) Rm

u 2 Rn

� �
with min

u
f ðuÞ, (1)
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where �k k denotes the Euclidean norm, u denotes the vector containing the unknown updating parameters,
r represents the residual vector comprising the frequency residual rf and the mode shape residual rm:

rf ðuÞ ¼
lA

i ðuÞ � lE
i

lE
i

; rmðuÞ ¼ fA
i ðuÞ � fE

i (2)

in which lA
i and lE

i are the square of the analytical and measured circular frequencies (l ¼ (2pf)2),
respectively; fA

i and fE
i are the mass-normalized analytical and measured mode shapes, respectively. It should

be mentioned that in this study, the measured mode shapes are also mass normalized because the impact force
was simultaneously recorded in the RC frame experiment. Alternatively, the mass matrix of the analytical
model might be used for mass normalization of the measured mode shapes [15].

Meanwhile, the residuals can be weighted according to their importance and the accuracy level of
measurement when necessary. A weighted minimization problem can be defined as

min12 W1=2rðuÞ
�� ��2

with the weighting matrix W.

2.2. Updating parameter and correction factor

Young’s modulus of concrete, E, which alternatively reflects the section stiffness as the section inertia I does,
is selected to be the updating parameter in this analysis. A correction factor is used to represent the change of
Young’s modulus. A dimensionless correction factor CE,i is used herein instead of an absolute value in order to
avoid the different orders of different parameters in their magnitudes:

CE;i ¼ �
E

upd
i � Eref

i

Eref
i

, (3)

where E
upd
i and Eref

i are the updated and reference values of Young’s modulus of substructure i, respectively.
Accordingly, the updated modulus is E

upd
i ¼ Eref

i ð1� CE;iÞ, where a positive value of the correction factor
means a reduction of Young’s modulus.

2.3. Bidimensional damage function

Adjusting the stiffness property of each element separately is prone to generate numerous independent
unknown variables, which frequently results in an ill-conditioned optimization problem and considerably
increases the computational expense. In order to reduce the number of unknown variables, Teughels et al. [16]
proposed an additional parameterization method, named damage function, assuming that the correction
factors of updating parameters vary continuously over the FE model. This method was successfully
implemented on an RC concrete beam modeled with one-dimensional beam elements to identify the damage.
In this study, a bidimensional damage function is proposed as an extension of the aforementioned one-
dimensional damage function method for the cases with structures modeled with two-dimensional (2D) FEs.

As an illustration, the proposed bidimensional damage function is constructed using the linear nodal shape
functions defined on the standard 2D rectangular FE with four nodes, which is used to establish the FE model
of the RC frame. The element-level local damage function, Nde

i ðx; yÞ ði ¼ 1; 2; 3; 4Þ, is defined as (Fig. 1(a))

Nde
1 ðx; yÞ ¼

1
4
ð1� xÞð1� yÞ; Nde

2 ðx; yÞ ¼
1
4
ð1þ xÞð1� yÞ;

Nde
3 ðx; yÞ ¼

1
4
ð1þ xÞð1þ yÞ; Nde

4 ðx; yÞ ¼
1
4
ð1� xÞð1þ yÞ

(4)

with x, y define the geometrical coordinates of FE e.
Then the global damage function Ni(x, y) linked to a damage element or its nodes can be constructed by

mapping Nde
1 ðx; yÞ onto damage elements consisting of a set of neighboring FEs:

Niðx; yÞ ¼
[nde
de¼1

bdeN
de
i ðx; yÞ bde ¼

1 if i 2 de

0 else

�� �
ð[ ) assembly symbolÞ, (5)
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Fig. 1. Bidimensional (a) linear (b) step damage function.

N6 (x, y)

N5 (x, y)

Nn (x,y)

Nn-1 (x, y)

1

4

2 5 7 n - 3 n - 1

3 6 8 n - 2 n
p6

p 5

pn

p n-1

Middle damage function Side damage function

x

y

1 5 7 n - 3 n - 1

1

0

N5 (x, y)

p5

N7 (x, y)

p7

1 5 7 n - 3 n - 1

1

0
p5

2

N5 (x, y)

2

Fig. 2. Global damage function defined on a planar deck: (a, b) middle and edge linear functions and (c) step function.
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where nde is the number of damage elements, i denotes a node of certain FE and de denotes a specific damage
element.

As an example, Fig. 2(a) shows the damage-element mesh of a deck modeled with planar rectangular FEs.
The global damage function of this mesh is defined with respect to the nodes (or elements). Each Ni (x, y)
differs from zero only in its adjacent damage elements and equals zero in all the other damage elements.
Ni (x, y) is scaled to be Niðx; yÞ

�� �� ¼ 1 at the side nodes of damage elements, which results in a pyramid global
damage function as shown in Fig. 2.

With the application of the pre-described damage function, the damage situation of a FE e can be evaluated
by a correction factor ce defined as a linear combination of all the global damage functions:

ce ¼
Xnde
i¼1

piNiðxe; yeÞ, (6)

where ce denotes the correction factor of e with the global coordinates xe, ye at the center point of e inside the
damage element j (the continuous function ce is discretized at the FE’s center, which means a constant
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correction value is assigned for each updating FE), pi is the multiplication factor of Ni(x, y) and its vector p
replaces the vector u in Eq. (1) once the damage function method is used.

When written in a full-length matrix, the correction factor matrix C can be defined as

Cne�1 ¼ ½Nðx; yÞ�ne�np
pnp�1

3

c1

c2

..

.

cne

8>>>><
>>>>:

9>>>>=
>>>>;
¼

N1ðx1; y1Þ N2ðx1; y1Þ . . . Nnp
ðx1; y1Þ

N1ðx2; y2Þ N2ðx2; y2Þ . . . Nnpðx2; y2Þ

..

. ..
.

. . . ..
.

N1 xne
; yne

� 	
N2 xne

; yne

� 	
. . . Nnp

xne
; yne

� 	

2
666664

3
777775

p1

p2

..

.

pnp

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. (7)

It can be seen from Eq. (7) and Fig. 2 that the application of damage function guarantees
a smooth distribution of updating parameters and pi turns out to be the actual updating variable
of an optimization problem. Accordingly, the construction of the multidimensional damage function
for planar triangular FE and three-dimensional cases can be achieved using similar procedures as
prescribed.

In this study, only one model parameter, Young’s modulus of concrete, is updated and the parameter
adjustment is based on a substructure-level updating, which means the frame model is divided into several
substructures and all the FEs in each substructure have the same correction factor. Hence, the proposed
damage function is reconstructed and simplified into a bidimensional step function Ni(s) equal to 1 over the
damage element, as shown in Figs. 1 and 2(b):

Nde
i ðx; yÞ ¼ NiðsÞ ¼ 1 ðlocal functionÞ, (8)

Niðx; yÞ ¼
[nde
de¼1

bdeN
de
i ðx; yÞ ¼ NiðsÞ ¼

[nde
de¼1

bdeNiðsÞ ðglobal functionÞ.

Then the corresponding correction factor Cj of the substructure j is

Cj ¼
Xns

i¼1

piNiðsÞ. (9)

Here, ce is replaced by Cj representing a substructure-level correction factor and nde is replaced by ns which is
the number of substructures. Eq. (9) presents a stepwise function instead of a piecewise linear function as
shown in Eq. (6).

Using damage function considerably reduces the number of unknown variables in the updating process and
hence guarantees smooth and physically meaningful results. Meanwhile, the accuracy of updating results can
be improved by using a finer damage-element mesh or using a parameterized damage function instead of the
fixed piecewise linear function.
2.4. Optimization algorithm and sensitivity matrix

The residual vector r generally has a nonlinear relation with unknown model properties and thus the
objective function f(u) is minimized using a standard Trust Region Newton algorithm [12,17]. In each iteration
step s, the searching steps are limited within a ‘trust region’ to avoid unexpected large steps and f(u) is
approximated by a quadratic minimizor m(z) defined by the truncated Taylor series of f(u), which is fs in the
following equation:

minmðzÞ ¼ f s þ rf s


 �T
zþ 1

2
zT r2f s


 �
z zk kpDuð Þ, (10)

where z is the step vector and the gradient and Hessian of f(u), rf s and r
2f s, are defined as

rf s ¼ rf ðuÞ ¼
Xm

i¼1

riðuÞrriðuÞ ¼ JuðuÞ
TrðuÞ, (11)
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r2f s ¼ r
2f ðuÞ ¼ JuðuÞ

TJuðuÞ þ
Xm

i¼1

riðuÞr
2riðuÞ � JuðuÞ

TJuðuÞ, (12)

where Ju(u) is the sensitivity matrix consisting of the first partial derivatives of ri(u).
With the derivatives of r with respect to the correction factor c [18],

qrf

qc
¼

1

lE
i

lA
i

qc
and

qrm

qc
¼

fA
i

qc
,

the sensitivity of r with respect to the updating parameter pi can be deduced in a component notation as

qrj

qpi

¼
Xne

e¼1

qrj

qce

qce

qpi

¼
Xne

e¼1

qrj

qce
Ni;eðxe; yeÞ. (13)

And after introducing the damage function, the sensitivity (Jacobian) matrix is reduced to Jr:

½Jr�m�q ¼ ½Jo�m�ne
½N�ne�q ðm; q5neÞ, (14)

where m denotes the number of residual vectors and q denotes the number of actual variables of the
optimization problem.

It can be seen from Eq. (14) that the dimension of sensitivity matrix is considerably reduced and thus
increasing the possibility of obtaining a well-conditioned optimization problem.
3. Damage model of an RC beam segment

When cracked, RC undergoes complicated static and dynamic mechanisms. The stress and strain
distributions of concrete and reinforcement are complicated especially in the cracked regions, which
makes an accurate stiffness estimation of a cracked section difficult, to say nothing of a cracked
segment. However, in order to assess the conditions of RC structures, it would be very useful to estimate
the remnant stiffness of cracked structural components by some indices. For example, a damage coefficient, d,
evaluated as the ratio between the stiffness reductions in the damaged zone and the initial undamaged
stiffness:

d ¼ 1�
EId

EIu , (15)

where EIu and EId are the bending stiffness values of intact and damaged sections or components,
respectively. This damage coefficient is comparative to the correction factor defined in Eq. (6) when they are
applied between undamaged and damaged structures.

However, in spite of its importance, in the existing codes for the design of concrete structures, no formula is
provided to estimate the remnant stiffness of cracked components of RC structures under bending moments.
Hence, as a supplement of the FE updating techniques for damage identification, a simple and practical RC
damage model is proposed to approximately estimate the remnant stiffness of a cracked beam segment under
bending moment in this section. And the obtained value can subsequently be compared with that estimated
from the dynamic identification procedure. To achieve this, an expression for estimating the stiffness of a
cracked beam section is firstly deduced and then the formula for the remnant stiffness evaluation of a cracked
beam segment is established.
3.1. Stiffness estimation for a cracked beam section

To estimate the stiffness of a cracked beam section, a theoretical analysis of a cracked rectangular RC beam
section is presented. Some basic assumptions of neglecting the tensile strength of concrete, neglecting the
contribution of the compression reinforcement due to its little influence under moderate loads and the cracked
sections remaining plane were adopted herein. In Fig. 3(a), by equilibrium of internal moments across the
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Fig. 3. Computational model of a cracked RC beam cross-section and segment: (a) stress distribution of cracked cross-section

and (b) strain distribution of concrete and reinforcement in the segment.
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cracked cross-section the following expressions are obtained:

Mcr ¼ CZh0 ¼ oscxh0bZh0 ) sc ¼
Mcr

oxZbh2
0

and

Mcr ¼ TZh0 ¼ ssAsZh0 ) ss ¼
Mcr

AsZh0
, ð16Þ

where Mcr is the bending moment at the cracked cross-section, sc and ss are the maximum stress of concrete in
compression and the stress in the tensile reinforcement, C and T are the corresponding stress resultants,
respectively, h0 is the effective height of the cross-section and Z is the lever arm of the force couple; osc denotes
the average magnitude of the compression stress and xh0 the height of the compression area, respectively.

Considering a cracked RC beam segment under a short-term bending moment (Fig. 3(b)), the average
curvature j̄ can be defined as

j̄ ¼
�̄c þ �̄s

h0
¼

cc;x�c;x þ cs;x�s;x

h0
(17)

in which �̄c and �̄s are the absolute average strains of compressed concrete and tensile reinforcement of the
beam segment, respectively; �c;x and �s;x are the strain values of concrete in compression and reinforcement in
tension at the cross-section x, respectively. cc, x and cs, x are the coefficients of the uneven strain distribution
of concrete in compression and of reinforcement in tension of the cross-section x. As the strains between the
cracked and intact cross-sections are different, an average strain has been used for the segment.



ARTICLE IN PRESS
S.-E. Fang et al. / Journal of Sound and Vibration 313 (2008) 544–559 551
By considering the constitutive laws of compressive concrete and tensile reinforcement, �c ¼

sc=bEc and �s ¼ ss=Es, and introducing Eqs. (16) and (17), the following expression is obtained (considering
the cracked cross-section xi):

j̄ ¼
�̄c þ �̄s

h0
¼

cc;xi
ðsc;xi

=bEcÞ þ cs;xi
ðss;xi

=EsÞ

h0
¼

cc;xi
ðMcr;xi

=oxZbh2
0bEcÞ þ cs;xi

=ZðMcr;xi
=EsAsh0Þ

h0

¼
Mcr;xi

=zEcbh2
0 þ cs;xi

=ZðMcr;xi
=EsAsh0Þ

h0
, ð18Þ

where z ¼ oxZb=cc;xi
is the average strain coefficient of the compressed concrete, b represents a variable

reduction factor to take into account the nonlinearity of concrete.
Provided that the segment length L approximates to the section dimensions (LEb or h), the curvature j(x)

of each section x along the segment can be assumed as a constant j0
1 equal to the average curvature, namely,

j̄ ¼ j0. Additionally, the section curvature has a relationship with the section moment and stiffness,
j ¼ ðM=EIÞ ¼ ðM=BÞ. Thus, the remnant stiffness at the cracked section xi in this segment, Bcr;xi

, can be
deduced from Eq. (18):

Bcr;xi
¼

EsAsh
2
0

ðcs;xi
=ZÞ þ ðaEr=zÞ

¼
EsAsh

2
0

ðcs;xi
=0:87Þ þ 0:2þ 6aEr

, (19)

where aE ¼ ðEs=EcÞ is Young’s modulus ratio of steel and concrete; r ¼ ðAs=bh0Þ is the reinforcement ratio of
the beam section; aEr=z can be expressed into 0.2+6aEr for rectangular sections and Z is approximately equal
to 0.87 in most of the short-term loading cases [19]; Meanwhile, the coefficient of uneven strain distribution of
reinforcement in tension, cs;x, at the cross-section x can be adopted from [19]

cs;x ¼ 1:1� 0:65
f tk

ssk;xrte
, (20)

where ssk;x ¼ ðMsk;x=AsZh0Þ ¼ ðMsk;x=0:87Ash0Þ denotes the equivalent stress of tensile reinforcement
considering the standard ensemble of load effects, ftk denotes the standard axial tensile strength of concrete,
rte ¼ ðAs=AteÞ ¼ ðAs=0:5� bhÞ is the reinforcement ratio with respect to the area of concrete in tension, cs,x

indicates the participation level of the concrete between two cracks in resisting the bending moment. And from
Eq. (20), it can be seen that a higher bending moment results in a higher ssk,x and so induces an increase
of cs,x, which results in the reduction of Bcr,x, as can be seen from Eq. (19).
3.2. Generalized bending stiffness of a cracked RC beam segment

In practice, the stiffness estimation of a cracked structural segment, rather than a section, is more significant
in evaluating the remnant load capacities of damaged RC structures. However, no such formula is given in the
existing codes for the design of RC structures. Therefore, this study attempts to propose a practical formula
for approximately estimating the remnant stiffness of a cracked beam segment based on the damage model
illustrated in Fig. 4 (only one crack is assumed in the segment for simplicity). It should be mentioned that the
damage model is only applicable to the damaged structures under short-term moments having cracked
sections with open cracks.

If it is assumed as previously stated that the curvature is constant for the beam segment (j(x) ¼ j0), then
the stiffness, B(x) ¼ EI(x), follows the same variation as the moment M(x):

BðxÞ ¼
MðxÞ

jðxÞ
¼

MðxÞ

j0

¼ gMðxÞ (21)

with g ¼ 1/j0 the slope factor.
1For the segment under moderate bending moment as it is in this case study, this assumption is tenable.
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Fig. 4. Damage model of an RC beam segment with one crack.
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Then considering a linear variation for the moment, the remnant bending stiffness Bre of the cracked beam
segment can be formulated based on the proposed damage model (Fig. 4):

Bre ¼
Al;x1
þ Ar;x1

þ � � � þ Al;xi
þ Ar;xi

þ � � � þ Al;xn
þ Ar;xn

L

¼
Bcr;x1

þ Bl;x1

� 	
� Ll;x1

þ Bcr;x1
þ Br;x1

� 	
� Lr;x1

þ � � � þ Bcr;xn
þ Bl;xn

� 	
� Ll;xn

þ Bcr;xn
þ Br;xn

� 	
� Lr;xn


 �
2L

L ¼ Ll;x1
þ Lr;x1

þ � � � þ Ll;xn
þ Lr;xn

; n : the number of the cracks in the segment
� 	

, ð22Þ

where Bcr;xi
is the bending stiffness of the cracked section xi, determined according to Eq. (19), and Bl=r;xi

¼

EcIc þ EsIs is the stiffness of intact side cross-sections; Ll;xi
and Lr;xi

are the distances of the crack xi to the
(left and right) edges of the segment i and delimit the influence area of each crack, Al;xi

and Ar;xi
are the areas

under the stiffness versus distance relation at both sides of crack xi. Once the reduced bending stiffness has
been determined, the damage coefficient can be calculated with Eq. (15).
4. Description of RC frame experiment

Static and dynamic tests were performed on a laboratory-scale RC frame with one storey and one bay
(Fig. 5). The geometric dimensions and reinforcement layout in the sections are illustrated in Fig. 5(b).
Initially, the frame was tested dynamically with the purpose of determining the dynamic characteristics
of the intact frame. Then a static concentrated load was applied at the mid span of the beam in a stepwise
increasing way until the first visual crack appeared in the beam section adjacent to the loading point.
And the static tests were performed with a simply supported boundary condition. Subsequently, a modal test
was carried out on the cracked frame to obtain the dynamic characteristics of the damaged frame. By these
means, modal parameters of the intact and damaged frame are available to validate the proposed model and
method.

For the modal testing, the RC frame was supported on two rubber springs at the column bases in order to
simulate a free–free boundary condition. Under this boundary condition, the cracks were opened, which can
be advantageous for detecting the structural deterioration when the dynamic excitation is performed using
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low-energy devices. And the frame was excited by an impulsive load given by an impact hammer and the
response was measured at different positions using piezoelectric accelerometers. The input and output
signals were recorded and analyzed using a self-developed modal testing and analysis program IDAS [20]
and the modal frequencies and corresponding mass-normalized mode shapes were extracted from the
measured data. Fig. 6(a) shows the first three experimental bending modes of the beam and it can be seen that
the damage at the mid-span of beam causes a change in the mode shape. Table 1 presents a summary of the
first nine modal frequencies of the intact and damaged frame. As expected, the frequencies decrease due to
the damage.
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Table 1

Reduction factors of different substructures

Substructure Rf,ref Rf,app Substructure Rf,dam

E1 �0.0734 0.1241 E10 0.3804

E2 0.1215 0.0401 E20 0.1106

E3 �0.0667 �0.0189 E30 0.0650

E4 �0.1672 �0.0064 E40 �0.0117

Note: Rf,ref, Rf,app and Rf,dam denote the stiffness reduction factors of the reference state, the approximate estimation step and the damage

state, respectively.
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5. Damage identification of an RC frame

5.1. Damage identification by FE updating

5.1.1. FE modeling and residual construction

A 2D plane element having four nodes with two translation degrees of freedom at each node was used to
model the RC frame. The measured material properties and geometrical dimensions were used to develop the
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Fig. 7. Substructural division of an RC model.
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FE model. A total of ne ¼ 756 plane elements were generated, as shown in Fig. 7. And none of nodes in the FE
model was constrained in order to simulate the free boundary condition close to the experimental boundary
condition. Then a numeric modal analysis was carried out to obtain the first nine fundamental frequencies and
the corresponding mode shapes.

For the updating problem, the analytical residual vector r comprises the first nine fundamental frequency
residuals and 90 mode shape residuals of corresponding modes (6� 15 ¼ 90, 6 is the number of the adopted
mode shapes and 15 is the number of the measured points, Fig. 5(b)), which means a total of nr ¼ 9+90 ¼ 99
residuals. But for the construction of sensitivity matrix, the first nine mode shapes are used resulting in
n0r ¼ 9þ 135 ¼ 144 numeric residuals.

5.1.2. Updating procedures and performance of damage function

The damage identification was performed in three updating steps. In the first step, the initially developed FE
model was divided into four (np ¼ 4) substructures, E1, E2, E3 and E4, as shown in Fig. 7. Then it was
updated to the reference state using the measured modal frequencies and mode shapes of the undamaged
frame. Subsequently, based on the reference model, the updating was repeated using the measured data
of the damaged frame and the possibly damaged substructure (E1) was roughly identified. If a more detailed
damage pattern was required, an additional updating step could be implemented. Only those substructures
roughly detected in the second step would be updated again by dividing them into finer substructures.
In our particular study, the damaged substructure E1 detected in the previous step was refined into three
new substructures (E1)E10+E20+E30), and the remainder beam segments were also assigned a new
substructure E40 in order to avoid misidentifying in the second step. Then Young’s moduli of those new
substructures were updated to accurately identify the damaged segment, E10. In this sense, a rough
estimation of possibly damaged substructure prior to an accurate identification avoids fractionizing the FE
model into redundant substructures and thus improves the updating process and economizes the
computational expense.

Concerning the performance of the bidimensional (step) damage function on the sensitivity matrix J, using
the reference updating process as an example, the original matrix Jo has a dimension of nr� ne ¼ 144� 756
with a condition number of 3.263� 1018. But the dimension of the reduced matrix Jr is nr� np ¼ 144� 4 with
a condition number 10.98 indicating a well-conditioned iterative problem. This proves that using damage
function greatly improves the convergence performance of the optimization problem.
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Table 2

Updated modal frequencies of reference and damage states

Updating

state

Undamaged Damaged

Mode Exp

(Hz)

FEAInitial

(Hz)

Error

(%)

FEAref

(Hz)

Error

(%)

Exp

(Hz)

FEAref

(Hz)

Error

(%)

FEAdam

(Hz)

Error

(%)

1 30.16 30.58 1.40 30.23 0.22 29.1 30.23 3.87 29.07 �0.11

2 69.34 71.36 2.91 68.52 �1.18 68.05 68.52 0.69 66.91 �1.67

3 178.11 183.24 2.88 180.78 1.50 170.24 180.78 6.19 174.94 2.76

4 339.06 336.87 �0.65 336.18 �0.85 335.53 336.18 0.19 330.60 �1.47

5 348.74 349.29 0.16 347.88 �0.25 344.65 347.88 0.94 342.47 �0.63

6 509.78 528.19 3.61 525.15 3.01 499.53 525.15 5.13 511.78 2.45

7 709.86 685.99 �3.36 695.50 �2.02 679.41 695.50 2.37 669.96 �1.39

8 790.07 788.76 �0.17 781.73 �1.06 768.7 781.73 1.70 760.44 �1.07

9 948.13 946.59 �0.16 948.08 �0.01 933.98 948.08 1.51 937.96 0.43
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5.1.3. Reference state updating

Young’s moduli of the four substructures, E1, E2, E3 and E4, were updated separately to minimize the
discrepancies between the experimental and numerical modal data. The initial FE model was updated to the
reference state with the updating results shown in Tables 1 and 2, Figs. 6 and 8. Table 2 lists the relative
differences in modal frequencies with respect to the experimental results both for the initial and updated FE
models. It is evident that a clear improvement appears for most frequencies after updating. As can be observed
in Fig. 8, only minor differences appear in the MAC-values between the initial and the updated models, since
very small changes occur for the experimental mode shapes (Fig. 6(a)). Meanwhile, Table 1 shows that all
Young’s moduli increase (negative correction factors) except that of the substructure at joint region (E2),
which decreases (positive correction factors) about 12% with respect to the initial value. This is reasonable due
to the fact that when casting, the concrete in the joint regions was not so compact as that of the concrete
specimens. On the contrary, the existence of reinforcement contributes to the increase of the stiffness of the
other substructures (for substructure E2, the contribution of reinforcement could not compensate the stiffness
reduction caused by casting).

5.1.4. Damage state updating

The identification of the applied damage was performed in two steps. Firstly, the reference FE model was
updated again using the measured modal data of the damaged frame. The same optimization procedure with
the same residuals as in the reference updating was applied and Table 1 clearly indicates that E1 was seriously
damaged when compared with the other substructures. However, upon considering only four substructures for
the whole frame the damage identification could be very rough since the possible damage is supposed to spread
over a limited zone. Hence, in order to accurately locate the damage, E1 was refined into three new
substructures, E10, E20 and E30 (Fig. 7, E40 was included as a supplement due to the consideration of updating
the whole beam), and the updating was repeated based on the reference FE model but only Young’s moduli of
the four new substructures were adjusted to accurately locate and quantify the damage occurred in E10 and E20

(Table 1), which agree with the experimental observations. Furthermore, the substructure E10 has a stiffness
reduction of 38% with respect to the reference value and E20 of 11% might also be lightly damaged, which is
also in agreement with the experimental results.

To evaluate the consistency between the coarse mesh of damage elements and the refined mesh, an
equivalent stiffness reduction factor or damage coefficient dE1;eq was calculated for E1 ¼ E10 þ E20 þ E30 as
follows:

dE1;eq ¼ dE10
LE10

LE1
þ dE20

LE20

LE1
þ dE30

LE30

LE1
¼ 0:3804� 0:2þ 0:1106� 0:4þ 0:0650� 0:4 ¼ 0:1463.

If compared with the value of the damage coefficient for the substructure E1 (Table 2), which is 0.1241, the
following relative difference can be obtained:

diff ¼
dE1 � dE1;eq

dE1

����
���� ¼ 0:1241� 0:1463

0:1241

����
����100% ¼ 18%.

5.2. Damage identification using damage model

The damage coefficient can also be evaluated using the damage model proposed in Section 3. In this case
study, the cracked segment E10 having a length of L ¼ 24 cm (b ¼ h ¼ 25 cm) is analyzed. Then the remnant
bending stiffness Bre can be calculated using Eqs. (19) and (22):

Bcr;xE10
¼

EsAsh
2
0

ðcs;xE10
=0:87Þ þ 0:2þ 6aEr

¼
2:1� 1011 � 452� 10�6 � ð0:9� 0:25Þ2

ð0:72=0:87Þ þ 0:2þ 6� 7:36� 0:008
¼ 3:48� 106ðNm�1Þ,

Bl;xE10
¼ Br;xE10

¼ 1� Rf ;E20
� 	

Bintact ¼ ð1� 0:1106Þ � 10:68� 106 ¼ 9:50� 106ðNm�1Þ.
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Thus,

Bre ¼
Al;xE10

þ Ar;xE10

L
¼

1

L

Bcr;xE10
þ Bl;xE10

� 	
L=2

2
þ

Bcr;xE10
þ Br;xE10

� 	
L=2

2

� 

¼
1

4
2ð3:48þ 9:50Þ½ �106 ¼ 6:49� 106ðNm�1Þ.
5.3. Comparison of the stiffness reductions predicted by the FE updating method and the damage model

It should be mentioned herein that the remnant stiffness calculated using the proposed damage model is
based on a static mechanism, but the updated stiffness by FE updating is actually based on a dynamic
mechanism, which means a direct stiffness comparison is not appropriate. Hence, a nondimensional reduction
factor Rf is proposed for the comparison. Then the stiffness reduction calculated using the damage model is

Rf ;static ¼ 1�
Bre

Bl;x
¼ 1�

6:49� 106

10:68� 106
� 100% ¼ 39:2%.

And the reduction of dynamic stiffness of E1, Rf ;dynamic, is 38% given in Table 1. It is found that Rf ;dynamic is
very close to Rf ;static with a difference of only 1.2%, which proves that the damage model is successfully
verified and can be used in similar calculations.

6. Conclusions

Damage identification of a tested RC frame by a sensitivity-based FE model updating method and an RC
damage model is presented in this paper. The updating method aims to adjust the FE model of the RC frame
as closely as possible to the experimental model by tuning Young’s modulus of concrete. The frame model is
divided into several substructures and Young’s moduli of the different substructures are updated by
minimizing the discrepancies of the experimental and numeric modal frequencies and mass-normalized mode
shapes. A bidimensional damage function developed for 2D FE models is proposed to reduce the number of
unknown updating variables. And together with the trust region algorithm, the application of the damage
function results in a well-conditioned optimization problem and considerably improves the convergence
performance. It is found that the proposed updating method can identify the damage located at the mid span
of the beam.

At the same time, an RC damage model in a static mechanism is also proposed to estimate the remnant
bending stiffness of a cracked beam segment under a short-term bending moment. The feasibility of the
damage model is verified against the updating results and it is shown that the proposed damage model is
applicable to an approximate estimation of the remnant bending stiffness of a cracked RC beam segment.
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